The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity.

نویسندگان

  • Olga K Mirzoeva
  • Tomohiro Kawaguchi
  • Russell O Pieper
چکیده

The chemotherapeutic agent temozolomide produces O(6)-methylguanine (O6MG) in DNA, which triggers futile DNA mismatch repair, DNA double-strand breaks (DSB), G(2) arrest, and ultimately cell death. Because the protein complex consisting of Mre11/Rad50/Nbs1 (MRN complex) plays a key role in DNA damage detection and signaling, we asked if this complex also played a role in the cellular response to temozolomide. Temozolomide exposure triggered the assembly of MRN complex into chromatin-associated nuclear foci. MRN foci formed significantly earlier than gamma-H2AX and 53BP1 foci that assembled in response to temozolomide-induced DNA DSBs. MRN foci formation was suppressed in cells that incurred lower levels of temozolomide-induced O6MG lesions and/or had decreased mismatch repair capabilities, suggesting that the MRN foci formed not in response to temozolomide-induced DSB but rather in response to mismatch repair processing of mispaired temozolomide-induced O6MG lesions. Consistent with this idea, the MRN foci colocalized with those of proliferating cell nuclear antigen (a component of the mismatch repair complex), and the MRN complex component Nbs1 coimmunoprecipitated with the mismatch repair protein Mlh1 specifically in response to temozolomide treatment. Furthermore, small inhibitory RNA-mediated suppression of Mre11 levels decreased temozolomide-induced G(2) arrest and cytotoxicity in a manner comparable to that achieved by suppression of mismatch repair. These data show that temozolomide-induced O6MG lesions, acted upon by the mismatch repair system, drive formation of the MRN complex foci and the interaction of this complex with the mismatch repair machinery. The MRN complex in turn contributes to the control of temozolomide-induced G(2) arrest and cytotoxicity, and as such is an additional determining factor in glioma sensitivity to DNA methylating chemotherapeutic drugs such as temozolomide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance.

The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1(+) homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS)...

متن کامل

Human MRE11 is inactivated in mismatch repair-deficient cancers.

Mutations of the ATM and NBS1 genes are responsible for the inherited Ataxia-Telangiectasia and Nijmegen Breakage Syndrome, both of which are associated with a predisposition to cancer. A related syndrome, the Ataxia-Telangiectasia-like disorder, is due to mutations of the MRE11 gene. However, the role of this gene in cancer development has not been established. Here we describe an often homozy...

متن کامل

Defective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks.

The Mre11.Rad50.Nbs1 (MRN) complex binds DNA double strand breaks to repair DNA and activate checkpoints. We report MRN deficiency in three of seven colon carcinoma cell lines of the NCI Anticancer Drug Screen. To study the involvement of MRN in replication-mediated DNA double strand breaks, we examined checkpoint responses to camptothecin, which induces replication-mediated DNA double strand b...

متن کامل

Distinct roles of the ATR kinase and the Mre11-Rad50-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis.

Signaling of chromosomal DNA breaks is of primary importance for initiation of repair and, thus, for global genomic stability. Although the Mre11-Rad50-Nbs1 (MRN) complex is the first sensor of double-strand breaks, its role in double-strand break (DSB) signaling is not fully understood. We report the absence of γ-ray-induced, ATM/ATR-dependent histone H2AX phosphorylation in Arabidopsis thalia...

متن کامل

The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression.

The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 5 11  شماره 

صفحات  -

تاریخ انتشار 2006